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Abstract

Generalizing the construction of the Maslov class [µ3] for a Lagrangian embedding in a sym-
plectic vector space, we prove that it is possible to give a consistent definition of the class [µ3]
for any Lagrangian submanifold of a Calabi–Yau manifold. Moreover, extending a result of Mor-
van in symplectic vector spaces, we prove that [µ3] can be represented byiHω, whereH is the
mean curvature vector field of the Lagrangian embedding andω is the Kähler form associated to
the Calabi–Yau metric. Finally, we conjecture a generalization of the Maslov class for Lagrangian
submanifolds of any symplectic manifold via the mean curvature representation. © 2000 Elsevier
Science B.V. All rights reserved.

MSC:57R20; 58F05; 83E30; 58A10

Sub. Class:Differential geometry; Strings

Keywords:Maslov class; Lagrangian submanifolds; Calabi–Yau manifolds; Mean curvature

1. Introduction

The Maslov class [µ3] of a Lagrangian embeddingj : 3 ↪→ V in the standard Euclidean
symplectic vector spaceV has been constructed by Maslov in the study of global patching
problem for asymptotic solutions of some PDEs (see [13] for further details on this point
of view). Subsequently, this cohomological class has found applications in the analysis of
several quantization procedures, starting from [1] up to recent aspects on its relations with
asymptotic, semiclassical and geometric quantization, for which we refer to [9,11]. In spite
of this, there are several problems in the very definition of the Maslov class for Lagrangian
submanifolds of generic symplectic manifolds.
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In [14] it has been proved that, for a Lagrangian embeddingj : 3 ↪→ V in a Euclidean
symplectic vector space(V , ω), the Maslov formµ3 can be represented byµ3 = iHω,
that is by the contraction of the symplectic form with the mean curvature vector field
H of the embeddingj . Unfortunately, the very definition of Maslov form (and related
class) as exposed in [1,2,13] depends on the fact that the Lagrangian submanifold3 is
embedded in a symplectic vector space, in which we have chosen a projectionπ : V →
30 over afixedLagrangian subspace30; then the Maslov class [µ3] ∈ H 1(3,R) can
be defined as the Poincaré dual to the singular locusZ(3) ↪→ 3, whereZ(3) := {3 ∈
3|rk(π∗(3)) < max} ∩ Hn−1(3,Z). In the classical literature it is proved that if one
changes projectionπ , that is if one changes the reference Lagrangian subspace30, then
the Maslov classµ3 does not change, while its representative changes. This is achieved
using the so-called universal Maslov class construction on the Lagrangian Grassmannian
GrL(V ) (the homogeneous space which parametrizes Lagrangian subspaces of(V , ω), see
[1,2,11]). These formulations depend heavily on the linear structure of the ambient manifold
V ; in particular it is assumed thatV is endowed with the trivial connection. Therefore, it
seems difficult even to define the Maslov class for Lagrangian submanifolds of symplectic
manifolds, which are not vector spaces. For instance, it is possible to define the Maslov class
of a Lagrangian embedding via the so-called generating functions, or their generalization
(Morse families), for which we refer to [13], and particularly [18]. In this way, one obtains
a notion of Maslov class for Lagrangian submanifolds embedded inanycotangent bundle
T ∗M over a Riemannian manifoldM, constructing aZ-valuedČech cocycle, starting from
the signature of the Hessian of a Morse family; however this construction depends strongly
on the choice of a “base manifold” (M in the case of the cotangent bundle) and does not
seem to be generalizable to Lagrangian embedding in any symplectic manifold (see [18]
for more details on this kind of construction).

Recently, Fukaya [7] has shown how to define a Maslov index for closed loops on
Lagrangian submanifolds of a quite general class of symplectic manifolds, the so-called
pseudo-Einstein symplectic manifolds. The construction is developed using nontrivial as-
sumptions on the structure of the ambient manifold and is carried on only for a particular
subclass of Lagrangian submanifolds; moreover, there is no explicit reference to the corre-
sponding Maslov class.

In this paper we show that, whenever the ambient manifold is Calabi–Yau, it is possible
to give a consistent definition of Maslov class for its Lagrangian submanifolds, generalizing
the approach of Arnol’d with the so-called universal Maslov class. In this framework, we
show that it is possible to generalize the result of Morvan and then we comment on various
consequences of our construction, in particular on the possible definition of Maslov class
for Lagrangian embedding in any symplectic manifold.

2. The Maslov class for Lagrangian embedding in Calabi–Yau

Let us briefly recall the standard construction of the Maslov classµ3, for a Lagrangian
submanifold3, embedded in a symplectic vector space(V , ω), of real dimension 2n: first of
all, one considers the tangent spaces to3 as (affine) subspaces ofV . Then, using the trivial
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parallel displacement one transports every tangent plane in a fixed pointP ofV (for example
the origin). Now, one has to consider the Lagrangian Grassmannian GrL(TP V ), which by
definition parametrizes all Lagrangian subspaces ofTPV . Using the trivial connection, we
have thus obtained a map

G : 3 → GrL(TP V ).

It is easy to see [1,2] that GrL(TP V ) has the natural structure of the homogeneous space
U(n)/O(n); then by the standard tool of the exact homotopy sequence for a fibration (see
[6]), it is proved thatπ1(GrL(TP V )) ∼= Z. In fact, having fixed a Lagrangian plane30

in TPV , all other Lagrangian planes are obtained via a unitary automorphismA ∈ U(n).
Obviously, we have a fibration

SU(n) → U(n)
det→S1,

but this does not descend to GrL(TP S), since we have to quotient out the possible or-
thogonal automorphisms. However, since the square of the determinant of an orthogonal
automorphism is always 1, we have a well-defined map

det2 : GrL(TP S) → S1,

which sits in the following commutative diagram of fibrations:

SO(n) → O(n)
det→ S0

↓ ↓ ↓
SU(n) → U(n)

det→ S1

↓ ↓ ↓ z2

GrSL(Cn) → GrL(Cn)
det2→ S1

In this diagram the space GrSL(Cn) denotes the Grassmannian of special Lagrangian
planes inCn, that is the Grassmannian of Lagrangian planes which arecalibratedby the
top holomorphic form ofCn; the corresponding Lagrangian submanifolds are called special
Lagrangian (see [10] for more details). Notice that this space is always simply connected.

Finally, using Hurewicz isomorphism and taking a generator belonging toH 1(GrL(TP V ),
Z), which is thought as the pull-back via det2 of the generator [α] ∈ H 1(S1,Z), one defines
the Maslov class [µ3] := G∗(det2)∗[α]. Obviously, this construction is independent on the
choice of the pointP , since if another point is chosen it is possible to construct a homotopy
in such a way so as to prove the invariance of [µ3]. It is clear that, in this framework, the
existence of the trivial connection is an (almost!) essential requirement for the construction
to work. In fact, we will see in this section that to have a consistent definition of Maslov
class it is not necessary that the ambient manifold is endowed with the trivial connection,
but is sufficient that the global holonomy of the symplectic manifold is “small” in a suitable
sense.

From now on we restrict our attention to Lagrangian submanifolds of Calabi–Yau mani-
folds. Recall that Calabi–Yau manifolds can be defined as compact Kähler manifolds with
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vanishing first Chern class; recall also that a celebrated theorem by Yau (proving a previous
conjecture by Calabi) implies that for every choice of the Kähler class on a Calabi–Yau,
there exists a unique Ricci-flat Kähler metric. Moreover, while the holonomy of a Kähler
manifold is contained inU(n), if g is the Ricci-flat metric of ann-dimensional Calabi–Yau,
then the corresponding holonomy group is contained in SU(n). Finally, let us recall that, on
every Kähler manifold(X, g, J ) (whereg is a Kähler metric andJ the integrable almost
complex structure) the corresponding symplect or Kähler formω is related tog via

ω(X, Y ) := g(X, JY) ∀X, Y ∈ 0(TX) (1)

and that the almost complex structure tensorJ is covariantly constant with respect to the
Levi-Civita connection induced byg. Considering a Kähler metricg on a Calabi–Yau, we
will always mean the Ricci-flat metric. Typical examples of Calabi–Yau are given by the
zero locus of a homogeneous polynomial of degreen + 1 in Pn(C) (whenever this locus
is smooth); however, it is by no means true that all Calabi–Yau are algebraic. For further
details on this class of manifolds see for example [4,17].

The construction of Fukaya for defining the Maslov index of closed loops goes as follows
(see [7] for details and motivations). He considers symplectic manifolds(X, ω) which are
“pseudo-Einstein” in the sense that there exists an integerN such thatNω = c1(X). By this
relation, the line bundle det(TX) is flat when restricted to every Lagrangian submanifold
3 of X, but Fukaya restricts further the class of Lagrangian submanifolds considering
only the so-called Bohr–Sommerfeld orbit3 (BS-orbit for short), which are defined as
the Lagrangian submanifolds for which the restriction of det(TX) is not only flat, but even
trivial. This implies that if we consider a closed looph : S1 → 3 (3 is a BS-orbit), then the
monodromyM of the tangent bundleTXalongh(S1) is contained in SU(n). Then the idea
is to take a path in SU(n) joiningM with the identity in order to get an induced trivialization
of h∗(TX|h(S1))

∼= S1 × Cn. In this trivial bundle there is a family of Lagrangian vector
subspacesTh(t)3 and in this way we get a loop in GrL(Cn) and hence a well-defined integer
(the Maslov index)m(h). Obviouslym(h) is independent of the choice of the path in SU(n)
which joinsM to the unit, sinceπ1(SU(n)) ∼= 1.

Now we come to our construction. Consider embedded Lagrangian submanifolds3

of a Calabi–Yau(X, ω, g, J ), whereω, g, J are related by (1). Define theLagrangian
GrassmannizationGrL(X) of TX as the fibre bundle overX obtained by substitutingTxX
with GrL(TxX), thus

GrL(X) := q
x∈X

GrL(TxX)

and in particular

GrL(X)3 := q
x∈3

GrL(TxX).

LetG(j) be the Gauss map, which takesx ∈ 3 in Tx3 thought as a Lagrangian subspace of
TxX. ViaG(j), the embeddingj : 3 ↪→ X lifts to a sectionG(j) : 3 → GrL(X)3. We
would like to define the Maslov class of3 via a mapM : 3 → S1 in the following way: to
every pointx ∈ 3, we considerG(j)(x) and then through the isomorphism GrL(TxX) ∼=
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U(n)/O(n), taking the map det2 we get a point inS1. However, as we have seen, to establish
an isomorphism to every space GrL(TxX) (x ∈ 3) with U(n)/O(n) we need a reference
Lagrangian plane in GrL(TxX)∀x ∈ 3, that is we needanother sectionof GrL(X)3, besides
G(j)(3).

To this aim, fix a pointp ∈ 3, considerTp3 and use the parallel displacement, induced
by the Levi-Civita connection ofg, along a systemγ of paths on3 starting fromp, to
construct a reference distribution of Lagrangian planesDγ over3 that is another section
of GrL(X)3. This is indeed possible, since the holonomy is contained inU(n), the parallel
displacement is an isometry forg andJ is covariantly constant: these facts combined with
the relation (1) imply that parallel transport sends Lagrangian planes in Lagrangian planes.
Obviously this distributionDγ is not uniquely determined, since it depends on the choice
of the system of pathsγ starting fromp. In spite of this, due to the fact that the holonomy
of a Calabi–Yau metric is very constrained, this dependence does not prevent us to reach
our goal. Indeed, considerq ∈ 3 and compare the two Lagrangian planes(Dγ )q and(Dδ)q
obtained by parallel transport ofTp3 along two different pathsγ andδ. By the holonomy
property of a Calabi–Yau metric we have

(Dγ )q = M(Dδ)q, M ∈ SU(n).

Thus, ifA ∈ U(n) is such thatTq3 = A(Dγ )q , thenTq3 = AM(Dδ)q ; so to everyq ∈ 3
we can associateAq such thatG(j)(q) = Tq3 = Aq(Dγ )q , whereAq is determined
up to multiplication by a matrixM ∈ SU(n). At this point the key observation is that
det2(Aq) ∈ S1 is a well-defined point, which is not affected by the ambiguity ofAq . In this
way we have a well-defined map, theMaslov map

M : 3 → S1

q 7→ det2(Aq)

Take the generator [α] of H 1(S1,Z) represented by the formα := (1/2π)dθ . Observe that
the target space of the Maslov map is not only topologically a circle, but even a Lie group,
the groupU(1): this implies that the choice of the form(1/2π)dθ is compulsory, since it
is the unique normalized invariant 1-form. Now we can give the following:

Definition. Using the previous notations, we define theMaslov formof the Lagrangian
embeddingj : 3 ↪→ X asµ3 :=M∗α and the correspondingMaslov classas [µ3] =
M∗[α] ∈ H 1(3,Z).

Remark 1. The Maslov mapM has been built up fixing a reference point p, from which
we constructedDγ ; in this way the mapM associates to p1 ∈ S1. It is clear that if one
takes a different reference pointp′, then the mapM changes(this timep′ goes to1),but the
Maslov class and the Maslov form do not change, as it is immediate to see. In particular,
the invariance of the Maslov form is due to the invariance ofα under the action of the Lie
groupU(1).
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Remark 2. In [16], Trofimov constructed a generalized Maslov class as a cohomological
class defined on the space of paths[X,3]; these paths start from a fix pointx0 in a symplectic
manifold X and end to a fixed Lagrangian submanifold3 of X. We argue that the Maslov
class we have just defined can be obtained as a finite dimensional reduction of the class built
up in [16], when one uses the Levi-Civita connection induced by the Calabi–Yau metric. In
fact, Trofimov did not use metric connections, but instead affine torsion-free connections,
preserving the symplectic structure, which are generally not induced by a metric.

3. Representation of the Maslov class via the mean curvature vector field

In this section, generalizing what has been proved by Morvan in [14] for Lagrangian
embeddings in Euclidean symplectic vector space, we prove the following:

Theorem. Let j : 3 ↪→ X be a Lagrangian embedding in a Calabi–Yau X and let
H ∈ 0(N3) be the mean curvature vector field of the embedding j(with respect to the
Calabi–Yau metric), then

µ3 = 1

π
iHω,

whereω is the Kähler form constructed from the Calabi–Yau metric g,andµ3 is the Maslov
form previously defined.

Before proving the theorem we need various preliminary results, which we are going to
state and prove, and we also need to decompose into simpler pieces the action ofM∗ on [α].

Recall that given an embeddingj , the associated second fundamental formσ : T3 ×
T3 → N3 is a symmetric tensor defined by

σ(X, Y ) := ∇g
XY − ∇j∗g

X Y, ∀X, Y ∈ 0(T3),
where∇g is the Levi-Civita connection in the ambient manifold, while∇j∗g is the con-
nection induced on3 via the pulled-back metric. Ifσ is identically vanishing, then the
submanifold is called totally geodesic. Taking the trace ofσ we get a field of normal vec-
tors, that is themean curvature vector fieldH of the embeddingj . Those embeddings for
whichH is identically vanishing are called minimal.

First of all we need to understand the local structure ofTGrL(TxX). Fix a pointq ∈ 3
and setV := TqX for short. We can prove the following.

Lemma 1. The spaceTπGrL(V ) over a Lagrangian n-planeπ of V can be identified with
the subspace of linear mapsψ : π → π⊥ (π⊥ denotes the orthogonal subspace in V with
respect to the metric g in q) such that

g(ψ(X), JY) = g(ψ(Y ), JX), ∀X, Y ∈ π.

Proof. First of all, we haveTπGrL(V ) ≡ S(π), whereS(π) is the space of all symmetric
bilinear forms onπ . In fact everyv ∈ TπGrL(V ) can be represented as(d/dt)B(t)π|t=0,
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whereB(t) is a path of linear symplectic transformation ofV , with the conditionB(0) =
idV . To v ∈ TπGrL(V ) we can associate a formSv given by

Sv(X, Y ) := ω

(
d

dt
B(t)X|t=0, Y

)
.

This form is clearly bilinear and is symmetric

Sv(X, Y )= ω

(
d

dt
B(t)X|t=0, B(t)Y|t=0

)

= d

dt
ω(B(t)X,B(t)Y )|t=0 − ω

(
B(t)X|t=0,

d

dt
B(t)Y|t=0

)

= 0 − ω

(
X,

d

dt
B(t)Y|t=0

)
= ω

(
d

dt
B(t)Y|t=0, X

)
= Sv(Y,X)

by the fact thatB(t) is a symplectic linear transformation ofV and by skewsymmetry of
ω. It is easy to verify that the corresponding mapTπGrL(V ) → S(π) is an isomorphism.
Moreover, we have

Sv(X, Y ) = ω

(
d

dt
B(t)X|t=0, Y

)
=
(1)
g

(
d

dt
B(t)X|t=0, JY

)
,

and thus, identifyingψ : π → π⊥ with (d/dt)B(t)π|t=0 we get the result. �

By Lemma 1 it is clear thatJ itself, restricted toq, can be considered not only as an element
of TπGrL(V ) but even as an invariant vector field on GrL(V ), that isJq ∈ 0(T GrL(V )).
Let e1, . . . , en be an orthonormal basis ofπ andf 1, . . . , f n the corresponding dual basis,
in such a way thatJe1, . . . , Jen is a basis ofπ⊥ and−Jf 1, . . . ,−Jf n the associated
dual basis. ThenJ as a vector belonging toTπGrL(V ) can be represented as a section of
π∗ ⊗ π⊥, that isJ = f i ⊗ Jei (Einstein summation convention is intended). FromJ in
this representation one can construct a 1-formJ̃ ∈ ω1(GrL(V )) using the pairing induced
by the metric, that is̃J = ei ⊗ −Jf i . This 1-form has quite an outstanding role.

Lemma 2. Fix an arbitrary Lagrangian plane in V in order to have a mapdet2 : GrL(V ) →
S1. Then

(det2)∗(α) = 1

π
J̃ ,

so thatJ̃ defines a closed form onGrL(V ).

Proof. It is sufficient to prove that for everyX ∈ TπGrL(V ) one has(det2)∗(α)(X) =
1
π
J̃ (X). Indeed

(det2)∗(α)(X) = (α)(det2∗(X)),

so we are led to compute the tangent map to det2. Assume for simplicity thatπ is the refer-
ence Lagrangian plane in the isomorphism GrL(V ) ∼= U(n)/O(n), so that it is represented
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by the identity matrix. Then, sinceTπGrL(V ) ∼= u(n)/o(n), consider a pathγ : (−ε, ε) →
u(n), such thatγ (0) = O and such that its image inu(n) has an empty intersection with
o(n) (except for the zero matrix). The exponential mapping determines in this way a path
in GrL(V ) throughπ . Now, we have

d

dt
det2(eγ (t))|t=0 = d

dt
det(e2γ (t))|t=0 = d

dt
(e2Tr(γ (t)))|t=0 = 2Tr(γ̇ (0)) = 2Tr(X),

whereγ̇ (0) is identified with the tangent vectorX in TπGrL(V ). Hence one gets

(det2)∗(α)(X) = (α)(det2∗(X)) = (α)(2Tr(X)) = 1

π
Tr(X).

On the other hand,X ∈ 0(π∗ ⊗ π⊥), so that it can be represented asX = Xlkf
k ⊗ Jel ;

thus one gets

J̃ (X) = (ei ⊗ −Jf i)(Xlkf k ⊗ Jel ) = Xii = Tr(X). �

Till now we have worked only locally, having fixed a pointq ∈ 3. To proceed we need to
globalize the properties stated in Lemmas 1 and 2. Let us define thevertical tangent bundle
VT(GrL(X)3) (VT(GrL) for short) over GrL(X)3 as

VT(GrL(X)3) := q
x∈3

TGrL(TxX)

notice that this is not the tangent bundle of GrL(X)3, since it is obtained by taking the
tangent bundle of the fibre only (thus the name vertical). Analogously, one can define the
vertical cotangent bundleover GrL(X)3 as

VT∗(GrL(X)3) := q
x∈3

T ∗GrL(TxX)

(from now on denoted asVT∗(GrL) for short).
Now, by the previous reasoning and sinceJ is covariantly constant on a Kähler manifold

X, we have thatJ defines a section ofVT(GrL) and analogouslỹJ induces a section of
VT∗(GrL). In order to globalize the result of Lemma 2, observe that the sectionDγ of
GrL(X)3 over3, defined in the previous section, enables one to give a well-defined map
Det2 : GrL(X)3 → S1 (one takes as a reference Lagrangian plane in GrL(TxX) the
subspace(Dγ )x). It is clear that one gets immediately the following.

Corollary 1. Under the previous notations and considering the fibrationDet2 : GrL(X)3 →
S1 induced by the reference distributionDγ , one has

(Det2)∗(α) = 1

π
J̃ ,

whereJ̃ is viewed as a section of VT∗(GrL).
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Via the Gauss map we can pull-backVT(GrL) to3:

G(j)∗(VT(GrL)) VT(GrL)
↓ ↓ prVT

3 → GrL(X)3

Lemma 3. The bundleG(j)∗VT(GrL) can be identified with the subspace ofT ∗3⊗N3

consisting of those sectionsψ ∈ 0(T ∗3 ⊗ N3) (that isN3-valued1-forms on3) such
that

g(ψ(X), JY) = g(ψ(Y ), JX), ∀X, Y ∈ 0(T3).

Proof. By the very definition of pulled-back bundle, we have that

G(j)∗VT(GrL)∼= {(x; x′, π,X) ∈ 3× VT(GrL) : (x, Tx3)

=G(j)(x) = prVT(x
′, π,X) = (x′, π)},

which clearly implies the constraintx = x′ andTx3 = π so that

G(j)∗VT(GrL) ∼= q
x∈3

Tπ=Tx3GrL(TxX).

On the other hand, by Lemma 1,

Tπ=Tx3GrL(TxX)∼= {ψ ∈ 0(T ∗
x 3⊗Nx3) such thatg(ψ(X), JY)

= g(ψ(Y ), JX), ∀X, Y ∈ Tx3},

so one gets immediately the thesis. �

The tangent application to the Gauss map is related to the second fundamental form as
shown in the following.

Lemma 4. The tangent map toG(j) in a pointx ∈ 3 can be identified with the second
fundamental formσ , thought of as an application with values inT ∗3⊗N3; more exactly
σ takes values in the subspaceG(j)∗(VT(GrL)) ofT ∗3⊗N3, in the sense that it satisfies
g(σ (X, Y ), JZ) = g(σ (X,Z), JY).

Proof. First of all, the identityg(σ (X, Y ), JZ) = g(σ (X,Z), JY) is a consequence of the
fact that Lagrangian submanifolds of Kähler manifolds are always anti-invariant (also called
totally real) submanifolds of top dimension (see [19, p. 35]). Hence, always by result of [19,
p. 43], we have the desired relation. Finally, the fact that the tangent map to the Gauss map
can be identified with the second fundamental form, via the action of the almost complex
structureJ and the metricg, is a classically known result which can be found, for example,
in [5, p. 196]. �



154 A. Arsie / Journal of Geometry and Physics 35 (2000) 145–156

Observe that by Lemmas 3 and 4, the second fundamental formσ(X, .), considered as a
map taking values inT ∗3⊗N3 is an element ofG(j)∗(VT(GrL)). Let us summarize the
situation in the following diagram:

T3
G(j)∗→ G(j)∗(VT(GrL)) ⊂ T ∗3⊗N3 VT(GrL) :

↓ ↓
3

G(j)→ G(j)(3) ↪→ GrL(X)3

Denote again with̃J the restriction ofJ̃ to the bundleG(j)∗(VT∗(GrL)). By the previous
diagram we can pull-back̃J to a closed 1-form on3 viaG(j)∗

(G(j)∗(J̃ ))(X) = J̃ (G(j)∗(X)) = J̃ (σ (X, .)) ∀X ∈ 0(T3), (2)

where the last equality in Eq. (2) is due to Lemma 4 and the pairing betweenJ̃ andσ(X, .)
is induced by the natural pairing betweenG(j)∗(VT∗(GrL)) andG(j)∗(VT(GrL)), respec-
tively.

Proof of the theorem. First of all, notice that the Maslov mapM : 3 → S1 can be
decomposed asM = Det2 ◦G(j), as is immediate to see. Thenµ3 :=M∗(α) = G(j)∗ ◦
(Det2)∗(α) and soµ3 = (1/π)G(j)∗(J̃ ) by Lemma 2. NowJ̃ = el ⊗ −Jfl andσ(X, .)
can be represented as0(T ∗3 ⊗ N3) 3 σ(X, .) = σki (X)f

i ⊗ Jek. In this way we have
that for allX ∈ 0(T3),

(G(j)∗(J̃ ))(X)= (el ⊗ −Jfl )(σ ki (X)f
i ⊗ Jek) = σ ii (X) =

∑
i

g(σ (X, ei), Jei )

=
∑
i

g(σ (ei, ei), JX) = (by Lemma 4) = g(H, JX) = ω(H,X)

= iHω(X).

Hence, one gets the result

µ3 = G(j)∗
(

1

π
J̃

)
= 1

π
iHω ∈ H 1(3,Z). � (3)

By the result of the theorem, one can give the following.

Definition. Let3 ↪→ X be a Lagrangian embedding in a Calabi–YauX, then the Maslov
indexm of a closed loopγ on3 is given by

m(γ ) := 1

π

∫
γ

iHω ∈ Z.
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4. Conclusions

Calabi–Yau manifolds have received great attention as target spaces for superstring com-
pactifications. Moreover their Lagrangian and special Lagrangian submanifolds are now
considered as the cornerstones for understanding the mirror symmetry phenomenon be-
tween pairs of Calabi–Yau spaces, both from a categorical point of view [12], and from a
physical–geometrical standpoint [15]. Let us recall that special Lagrangian submanifolds
3 of a Calabi–YauX are exactly what are called BPS states or supersymmetric cycles in
the physical literature; on the other hand, it is known that special Lagrangian submanifolds
are nothing else other thanminimalLagrangian submanifolds (compare [10 p. 96], where
this is proved for special Lagrangian submanifolds ofCn). From our result it turns out that
the Maslov class of special Lagrangian submanifolds is identically vanishing; on the other
hand, this can be seen just by considering the Grassmannian of special Lagrangian planes,
which turns out to be diffeomorphic to SU(n)/SO(n), hence simply connected (notice that
the Grassmannian of special Lagrangian planes is isomorphic to the fibre in the fibration
det2 : GrL(Cn) → S1). It is then clear that the Maslov index is identically vanishing for all
special Lagrangian submanifolds3 of a Calabi–YauX. We believe that this simple observa-
tion can enhance our understanding of the structure of theA∞-Fukaya category, whenever
its objects are restricted to minimal Lagrangian submanifolds (see [7] for a definition ofA∞

category, and [12] for its application in the study of mirror symmetry). Indeed, this is a key
point for the proof of homological mirror symmetry for K3 surfaces, for which we refer to [3].

The Maslov class so far constructed does not depend on the choice of a canonical pro-
jection, from which one could determine the singular locus (as it usually happens when one
considers Lagrangian embedding in cotangent bundles over an arbitrary Riemannian mani-
fold). However, it is still possible to determine, rather than the singular locus, thehomology
class[Z] ∈ Hn−1(3,Z) of a “singular locus”, just considering the Poincaré dual to [µ3],
and setting [Z] := Pd([µ3]) (Pd stands for Poincaré duality). We have said “a singular
locus”, becauseZ is not determined at all uniquely, but only up to its homology class; in
spite of this one could take as singular locus any representative of [Z]. So it makes sense
to speak of a singular locus, even if there is no projection to refer it.

It is clear that it is not possible to extend our definition of Maslov class for Lagrangian
embedding in arbitrary symplectic manifolds; even the construction of Fukaya (which is
specifically designed for Maslov index of closed loops only on BS orbits) needs several
assumption such that the ambient manifold admits a “prequantum bundle” and so on. We
are thus tempted to suggest the following alternative description: we would like to define the
Maslov class for a Lagrangian embedding inanysymplectic manifold(X, ω) via the mean
curvature representationiHω. Two problems arise following this approach. First of all, to
define the mean curvature vector fieldH it is necessary to fix a Riemannian metric onX; as it
is well known, on any symplectic manifold one has lots of Riemannian metricsgJ (X, Y ) :=
ω(X, JY), constructed using the given symplectic formω and choosing anω-compatible
almost complex structureJ (recall that the set ofω-compatible almost complex structures
on a given symplectic manifold is always nonempty and contractible, see [8]). What is the
“right” choice forgJ?
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Once we have fixed the right metric, the second problem is related to the closure of the
1-form iHω, considered as a form on3; indeed there is no reason, a priori, for whichiHω
has to be closed. We are thus led to the following.

Conjecture. Having fixed the Lagrangian embeddingj : 3 ↪→ X on any symplectic man-
ifold (X, ω), there exists at least one Riemannian metricgJ built up from anω-compatible
almost complex structureJ , such that the 1-formiHω considered as a form on3 is closed.
Multiplying the corresponding cohomological class [iHω] for a suitable constant in such a
way that it is integer valued, we call this class theMaslov–Morvan classof the Lagrangian
submanifold3.

It does not seem possible to give an interpretation of this conjectured Maslov–Morvan
class via the universal Maslov class, as we have done for Calabi–Yau manifolds, since, in
general, we have no control on the holonomy ofgJ .

Clearly, the study of the relations between the conjectured class [iHω] and the ordi-
nary Maslov class for a Lagrangian embedding in cotangent bundles (via Morse families)
deserves further effort and is left for future investigations.
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